
Week 12 – Friday



 What did we talk about last time?
 Readers-writers problem
 Search-insert-delete problem
 Dining philosophers







Form teams!





 The Internet has existed for a long time, but it's been transformed since 2000 by 
the power of distributed computing

 Commercial examples:
 Google's search, app, and storage technologies
 Facebook, which has more than 3.07 billion active users per month
 Amazon Web Services, providing access to distributed computing that can scale based 

on demand
 Blockchain technologies

 Crowd-sourced computing:
 BOINC, a platform for home computers to work on big problems, like SETI@home
 Folding@home, a platform for studying the computationally hard problem of protein 

folding
 Great Internet Mersenne Prime Search, searching for large prime numbers, currently 

holding the record for the largest prime with 41,024,320 digits



 Although a lot of computation involves both parallelism and 
concurrency, they're two different things

 Concurrency means that tasks can interact with each other
 Parallelism means that two tasks are running at the same time
 You can have concurrency without parallelism
 Example: A multi-threaded program on a single-core system, which can 

still have race conditions
 You can have parallelism without concurrency
 Example: Programs running on separate cores or processors that are 

computing part of a larger answer without coordination



Core 2Core 1
 Modern desktop and laptop CPUs are 

almost all multicore, meaning that 
they have separate cores capable of 
executing instructions independently
 Dual core example on the right

 Symmetric multiprocessing (SMP) 
computers have many processors 
connected to the same memory
 A model popular for older 

supercomputers
 Clusters use several machines 

connected on a network L3 Cache (Unified)
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 Concurrency is required for many systems to work and has 
many goals

 Parallel processing, however, is usually focused on getting 
work done faster

 To do this, parallel design patterns often work at two levels:
 Algorithmic strategy patterns that break down a problem in a way 

that can be computed by multiple processors
 Implementation strategy patterns for coding up parallel execution



 There are two fundamental kinds of parallelism that are 
possible

 Task parallelism
 Breaking up a problem into subtasks that can be run in parallel
 Example: Alice cooks dinner, Bob cleans the house, and Catherine 

gets vengeance on their enemies
 Data parallelism
 Doing the same tasks in parallel but on different data
 Alice, Bob, and Catherine each chop up 1/3 of the total amount of 

carrots for a soup



 The easiest kind of problems to parallelize are called 
embarrassingly parallel
 Maybe there are many unrelated tasks that all need to get done
 Maybe there's lots of data to process, and no coordination is necessary to 

process it
 The following code shows an embarrassingly parallel problem, 

since initializing the array could easily be divided up among many 
tasks

for (int i = 0; i < 100000000; ++i)
array[i] = i * i;



 Algorithms themselves can suggest approaches for 
parallelism

 Divide-and-conquer algorithms divide problems into parts, 
find answers for the sub-problems, and then combine those 
answers into an overall solution
 Quicksort partitions into two subarrays and then recursively sorts
 Merge sort also divides and recursively sorts

 As discussed in COMP 4500, many important algorithms have 
a divide-and-conquer shape, and it's often possible to let each 
divided task be handled by a separate thread



 The idea of a pipeline is to divide a task into independent 
steps, each of which can be performed by dedicated hardware 
or software

 Example RISC pipeline:
1. Instruction fetch
2. Decode
3. Execute
4. Memory Access
5. Writeback



 Consider a TV show with the following tasks:
1. Write
2. Rewrite
3. Film
4. Edit

 Assume each task takes 1 week
 How much total time does it take to produce a 13 episode season with no 

pipelining?
 How much time does it take if we can pipeline stages with fully independent 

teams for each stage?
 Note that a pipeline's speed is limited by its slowest stage, the bottleneck
 Each stage of a pipeline can be executed by a separate thread
 If you have an n stage pipeline, what's the maximum speedup you can get?



 After deciding on the algorithmic strategy pattern, it's 
necessary to turn it into code

 Several implementation strategy patterns are common:
 Fork/join
 Map/reduce
 Manager/worker



 The fork/join pattern uses a main thread that spawns additional threads 
when there are parallel tasks to be done

 After those tasks complete, the main thread joins the spawned threads
 A fork/join pattern could be used for either task parallelization or data 

parallelization



 The following code shows the fork part of a fork/join pattern where a 
thread is created to do some of the work of initializing a large array

 The OpenMP library contains macros to divide a loop between threads 
automatically, turning the following code into the previous

for (int i = 0; i < 10; ++i) // Make 10 threads
{
args[i].array = array;
args[i].start = i * 10000000;
pthread_create (&threads[i], NULL, multiply, &args[i]);

}

#pragma omp parallel for
for (int i = 0; i < 100000000; ++i)
array[i] = i * i;



 Map/reduce is similar to fork/join
 The biggest difference is a philosophical 

one about how the work is described
 Map/reduce has two stages:
 Map applies a function to each piece of input 

data
 Reduce combines the results to get a final 

answer
 Map/reduce is commonly used on 

clusters and distributed systems
 The open source Apache Hadoop is a popular 

tool for map/reduce computing



 The manager/worker thread pattern is commonly used with task parallelism
 Independent tasks are given to work threads that communicate with a central 

management thread
 Event handling, for example, can be viewed as manager/worker
 Workers can also wait for a data value to change from NULL, as in the code below

void * worker (struct args * _args)
{
struct args *args = (struct args *) _args;
pthread_mutex_lock (args->lock);
while (true)
{
while (args->data == NULL) // Wait for data
pthread_cond_wait (args->data_received, args->lock);

if (! args->running) pthread_exit (NULL);
// Process data

}
}



 There are additional decisions to be made beyond the algorithmic 
strategy pattern and the implementation strategy pattern

 How threads are mapped onto hardware is another issue
 Rather than worrying about creating too many threads initially or 

dynamically creating threads, one approach is a thread pool
 A thread pool is a fixed number of threads with a queue of tasks
 When a thread finishes its work, it can dequeue a new task



 Thread pool advantages:
 The cost of creating threads is only paid once
 Resource consumption is more predictable because there won't suddenly 

be a lot more threads
 Each thread self-manages the load by getting more work when it finishes

 Thread pool disadvantages:
 Cache performance can be poor because there's no coordination between 

which thread is doing what
 Crashes and errors can be hard to recover from since we won't know 

which thread was doing the thing that failed
 Managing the task queue requires synchronization that could slow things 

down 



 Flynn's taxonomy divides hardware into how 
they can deal with multiple instructions and 
multiple pieces of data
 Single Instruction Single Data (SISD) is 

sequential processing of one piece of data with 
one instruction

 Single Instruction Multiple Data (SIMD) is 
processing several pieces of data with the same 
instruction, like the vector processing done in 
graphics cards

 Multiple Instruction Single Data (MISD) isn't 
used commonly, but it can allow for fault-
tolerance because different instructions are 
executed in parallel on the same data

 Multiple Instruction Multiple Data (MIMD) is 
processing different instructions on different data 
at the same time

Images from Wikipedia





 Limits of parallelism
 Timing in distributed environments
 Reliable data storage and location



 Finish Project 3
 Due by midnight!

 Read sections 9.4, 9.5, and 9.6
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