
Week 12 – Friday



 What did we talk about last time?
 Readers-writers problem
 Search-insert-delete problem
 Dining philosophers







Form teams!





 The Internet has existed for a long time, but it's been transformed since 2000 by 
the power of distributed computing

 Commercial examples:
 Google's search, app, and storage technologies
 Facebook, which has more than 3.07 billion active users per month
 Amazon Web Services, providing access to distributed computing that can scale based 

on demand
 Blockchain technologies

 Crowd-sourced computing:
 BOINC, a platform for home computers to work on big problems, like SETI@home
 Folding@home, a platform for studying the computationally hard problem of protein 

folding
 Great Internet Mersenne Prime Search, searching for large prime numbers, currently 

holding the record for the largest prime with 41,024,320 digits



 Although a lot of computation involves both parallelism and 
concurrency, they're two different things

 Concurrency means that tasks can interact with each other
 Parallelism means that two tasks are running at the same time
 You can have concurrency without parallelism
 Example: A multi-threaded program on a single-core system, which can 

still have race conditions
 You can have parallelism without concurrency
 Example: Programs running on separate cores or processors that are 

computing part of a larger answer without coordination



Core 2Core 1
 Modern desktop and laptop CPUs are 

almost all multicore, meaning that 
they have separate cores capable of 
executing instructions independently
 Dual core example on the right

 Symmetric multiprocessing (SMP) 
computers have many processors 
connected to the same memory
 A model popular for older 

supercomputers
 Clusters use several machines 

connected on a network L3 Cache (Unified)

L2 Cache 
(Unified)

L1 Cache 
(Instruction)

Control Unit

L1 Cache 
(Data)

Arithmetic 
and Logic 

Unit

L2 Cache 
(Unified)

L1 Cache 
(Instruction)

Control Unit

L1 Cache 
(Data)

Arithmetic 
and Logic 

Unit





 Concurrency is required for many systems to work and has 
many goals

 Parallel processing, however, is usually focused on getting 
work done faster

 To do this, parallel design patterns often work at two levels:
 Algorithmic strategy patterns that break down a problem in a way 

that can be computed by multiple processors
 Implementation strategy patterns for coding up parallel execution



 There are two fundamental kinds of parallelism that are 
possible

 Task parallelism
 Breaking up a problem into subtasks that can be run in parallel
 Example: Alice cooks dinner, Bob cleans the house, and Catherine 

gets vengeance on their enemies
 Data parallelism
 Doing the same tasks in parallel but on different data
 Alice, Bob, and Catherine each chop up 1/3 of the total amount of 

carrots for a soup



 The easiest kind of problems to parallelize are called 
embarrassingly parallel
 Maybe there are many unrelated tasks that all need to get done
 Maybe there's lots of data to process, and no coordination is necessary to 

process it
 The following code shows an embarrassingly parallel problem, 

since initializing the array could easily be divided up among many 
tasks

for (int i = 0; i < 100000000; ++i)
array[i] = i * i;



 Algorithms themselves can suggest approaches for 
parallelism

 Divide-and-conquer algorithms divide problems into parts, 
find answers for the sub-problems, and then combine those 
answers into an overall solution
 Quicksort partitions into two subarrays and then recursively sorts
 Merge sort also divides and recursively sorts

 As discussed in COMP 4500, many important algorithms have 
a divide-and-conquer shape, and it's often possible to let each 
divided task be handled by a separate thread



 The idea of a pipeline is to divide a task into independent 
steps, each of which can be performed by dedicated hardware 
or software

 Example RISC pipeline:
1. Instruction fetch
2. Decode
3. Execute
4. Memory Access
5. Writeback



 Consider a TV show with the following tasks:
1. Write
2. Rewrite
3. Film
4. Edit

 Assume each task takes 1 week
 How much total time does it take to produce a 13 episode season with no 

pipelining?
 How much time does it take if we can pipeline stages with fully independent 

teams for each stage?
 Note that a pipeline's speed is limited by its slowest stage, the bottleneck
 Each stage of a pipeline can be executed by a separate thread
 If you have an n stage pipeline, what's the maximum speedup you can get?



 After deciding on the algorithmic strategy pattern, it's 
necessary to turn it into code

 Several implementation strategy patterns are common:
 Fork/join
 Map/reduce
 Manager/worker



 The fork/join pattern uses a main thread that spawns additional threads 
when there are parallel tasks to be done

 After those tasks complete, the main thread joins the spawned threads
 A fork/join pattern could be used for either task parallelization or data 

parallelization



 The following code shows the fork part of a fork/join pattern where a 
thread is created to do some of the work of initializing a large array

 The OpenMP library contains macros to divide a loop between threads 
automatically, turning the following code into the previous

for (int i = 0; i < 10; ++i) // Make 10 threads
{
args[i].array = array;
args[i].start = i * 10000000;
pthread_create (&threads[i], NULL, multiply, &args[i]);

}

#pragma omp parallel for
for (int i = 0; i < 100000000; ++i)
array[i] = i * i;



 Map/reduce is similar to fork/join
 The biggest difference is a philosophical 

one about how the work is described
 Map/reduce has two stages:
 Map applies a function to each piece of input 

data
 Reduce combines the results to get a final 

answer
 Map/reduce is commonly used on 

clusters and distributed systems
 The open source Apache Hadoop is a popular 

tool for map/reduce computing



 The manager/worker thread pattern is commonly used with task parallelism
 Independent tasks are given to work threads that communicate with a central 

management thread
 Event handling, for example, can be viewed as manager/worker
 Workers can also wait for a data value to change from NULL, as in the code below

void * worker (struct args * _args)
{
struct args *args = (struct args *) _args;
pthread_mutex_lock (args->lock);
while (true)
{
while (args->data == NULL) // Wait for data
pthread_cond_wait (args->data_received, args->lock);

if (! args->running) pthread_exit (NULL);
// Process data

}
}



 There are additional decisions to be made beyond the algorithmic 
strategy pattern and the implementation strategy pattern

 How threads are mapped onto hardware is another issue
 Rather than worrying about creating too many threads initially or 

dynamically creating threads, one approach is a thread pool
 A thread pool is a fixed number of threads with a queue of tasks
 When a thread finishes its work, it can dequeue a new task



 Thread pool advantages:
 The cost of creating threads is only paid once
 Resource consumption is more predictable because there won't suddenly 

be a lot more threads
 Each thread self-manages the load by getting more work when it finishes

 Thread pool disadvantages:
 Cache performance can be poor because there's no coordination between 

which thread is doing what
 Crashes and errors can be hard to recover from since we won't know 

which thread was doing the thing that failed
 Managing the task queue requires synchronization that could slow things 

down 



 Flynn's taxonomy divides hardware into how 
they can deal with multiple instructions and 
multiple pieces of data
 Single Instruction Single Data (SISD) is 

sequential processing of one piece of data with 
one instruction

 Single Instruction Multiple Data (SIMD) is 
processing several pieces of data with the same 
instruction, like the vector processing done in 
graphics cards

 Multiple Instruction Single Data (MISD) isn't 
used commonly, but it can allow for fault-
tolerance because different instructions are 
executed in parallel on the same data

 Multiple Instruction Multiple Data (MIMD) is 
processing different instructions on different data 
at the same time

Images from Wikipedia





 Limits of parallelism
 Timing in distributed environments
 Reliable data storage and location



 Finish Project 3
 Due by midnight!

 Read sections 9.4, 9.5, and 9.6


	COMP 3400
	Last time
	Questions?
	Project 3
	Assignment 7
	Distributed Computing
	Distributed computing
	Parallelism vs. concurrency
	Kinds of parallel systems
	Parallel Design Patterns
	Parallel design patterns
	Task parallelism and data parallelism
	Embarrassingly parallel
	Divide-and-conquer
	Pipelines
	Pipeline performance
	Implementation strategy patterns
	Fork/join
	Fork/join in code
	Map/reduce
	Manager/worker
	Parallel execution patterns
	Thread pools
	Flynn's taxonomy
	Upcoming
	Next time…
	Reminders

